If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+19t+30=0
a = 3; b = 19; c = +30;
Δ = b2-4ac
Δ = 192-4·3·30
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*3}=\frac{-20}{6} =-3+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*3}=\frac{-18}{6} =-3 $
| 0.01=10-0.01x | | 3(x+2)=- | | 15x-10=10x+15 | | 0.6x+7=14 | | 8=88-3x | | -19.07+9.46+12.2h=18.95-4.6h | | 3/2x(x+3)=4/5x-8 | | -22=p+18 | | 2+3(x-6)=3-5(x+3) | | 3(10)x+4+7=28 | | 15x-10=10+15 | | 13s-1=18s-11 | | 2×+15°=3x-30° | | -18+7p=6p | | -3/4x+6=11 | | 3.1=2(1.55n) | | -14j=-4-15j | | -18=7p=6p | | -18+17p=6p | | 2x^2+13x+18=3 | | 4(x-1)-2(x+7)=16 | | 3.26-17.6u=-18u+2.26 | | 8+4k=-5+k | | -15y+18=-6y+9 | | -13y+11y=-163 | | 3(-65)+2y=21 | | -11-4k-17=17-7k | | -2t-16-20t=-20t+18 | | 12x+6+54+72=180 | | -1x=65 | | 10x+16+37+37=180 | | 2/5m=12 |